Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Oil Aeration in Combustion Engines - Analysis and Optimization

2001-03-05
2001-01-1074
Like all technical fluids, lubricants are able to solve gases. While solved gas is a neutral part of the lubricant, dissolved gas has an influence especially on the compressibility behavior. The effects of oil aeration on engine drive causes malfunctions of several components. A successful optimization of the oil circulation concerning the oil aeration presupposes a safe and reproducible measuring procedure. The FEV has developed a measurement apparatus according to the principle of the volume measurement which allows a simple but efficient oil aeration measurement.
Technical Paper

Low Emission Concept for SULEV

2001-03-05
2001-01-1313
Today, SULEV legislation represents the most stringent emission standard for vehicles with combustion engines, and it will be introduced starting by Model Year 2003. In order to meet such standards, even higher effort is required for the development of the exhaust gas emission concept of SI engines. Beyond a facelift of the combustion system, exhaust gas aftertreatment, and the engine management system, new approaches are striven for. The principle keys are well known: low HC feed gas, high thermal load for quick light-off, exhaust system with low heat capacity and highly effective exhaust gas aftertreatment.
Technical Paper

Future Power Plants For Cars

2001-10-01
2001-01-3192
Environmental concern demands that emissions and fuel consumption of vehicles have to improve considerably in the next 10 years. New technologies for gasoline engines, downsizing with high boosting, direct injection and fully variable valve train systems, are being developed. For Diesel engines, improved components including piezobased injectors and particle filters are expected. In the drive train new starter-generator systems as well as automated manual transmissions are being developed. In parallel alternative fuels are investigated and the use of hybrid drives and fuel cells are developed. This paper reports the progress made in the recent years and gives a comparative assessment on the different technologies with a prediction of the introduction dates and volumes into the market.
Technical Paper

A New TEHD Approach for Sophisticated Simulation of Journal Bearings

2001-10-01
2001-01-3367
The new Thermo-Elasto-Hydro-Dynamic (TEHD) code developed by FEV, is designed to improve the predictability of journal bearing designs and thereby increase the reliability of safety factors in the development of highly loaded internal combustion engines. Advanced analysis tools are evaluated by their performance as well as by their ease of use. High performance means on the one hand: taking into account all the important characteristics, like bearing elasticity or cavitation effects, to mention only some major parameters for modern journal bearing analysis. On the other hand: an economic run-time behavior must be a key feature concerning usability of the TEHD-demands for daily development praxis. Ease of use means also, that the TEHD model can easily be used as a plug-in routine of an already existing software package that is well known to the development departments.
Technical Paper

Cooled EGR - A Must or an Option for 2002/04

2002-03-04
2002-01-0962
The introduction of the new emission standards in 2002/04 for heavy-duty diesel engines requires a substantial reduction of the NOx emissions while the particulate emissions remain on a constant level. The application of cooled EGR appears to be the most common approach in order to achieve the required target, although other means such as advanced combustion systems and the application of emission control devices to reduce NOx emissions have to be taken into account as well. The purpose of this study is to investigate the potential of such alternative solutions in comparison with cooled EGR to meet the upcoming emission standards.
Technical Paper

A New Approach to Boost Pressure and EGR Rate Control Development for HD Truck Engines with VGT

2002-03-04
2002-01-0964
Future HD Diesel engine technology is facing a combination of both extremely low exhaust emission standards (US 2002/2004, EURO IV and later US 2007, EURO V) and new engine test procedures such as the European Transient Cycle (ETC) in Europe and the Not-to-Exceed Area (NTE) in the US). Customers furthermore require increased engine performance, improved efficiency, and long-term durability. In order to achieve all targets simultaneously, future HD Diesel engines must have improved fuel injection and combustion systems and utilize suitable technologies such as exhaust gas recirculation (EGR), variable geometry turbine turbocharger systems (VGT) and exhaust gas after-treatment systems. Future systems require precision controlled EGR in combination with a VGT-turbocharger during transient operation. This will require new strategies and calibration for the Electronic Engine Control Unit (ECU).
Technical Paper

Start-Up Behavior of Fuel Processors for PEM Fuel Cell Applications

2003-03-03
2003-01-0420
This paper focuses on start-up technology for fuel processing systems with special emphasis on gasoline fueled burners. Initially two different fuel processing systems, an autothermal reformer with preferential oxidation and a steam reformer with membrane, are introduced and their possible starting strategies are discussed. Energy consumption for preheating up to light-off temperature and the start-up time is estimated. Subsequently electrical preheating is compared with start-up burners and the different types of heat generation are rated with respect to the requirements on start-up systems. Preheating power for fuel cell propulsion systems necessarily reaches up to the magnitude of the electrical fuel cell power output. A gasoline fueled burner with thermal combustion has been build-up, which covers the required preheating power.
Technical Paper

Relationship between Fuel Properties and Sensitivity Analysis of Non-Aromatic and Aromatic Fuels Used in a Single Cylinder Heavy Duty Diesel Engine

2011-04-12
2011-01-0333
Fuel properties are always considered as one of the main factors to diesel engines concerning performance and emission discussions. There are still challenges for researchers to identify the most correlating and non-correlating fuel properties and their effects on engine behavior. Statistical analyses have been applied in this study to derive the most un-correlating properties. In parallel, sensitivity analysis was performed for the fuel properties as well as to the emission and performance of the engine. On one hand, two different analyses were implemented; one with consideration of both, non-aromatic and aromatic fuels, and the other were performed separately for each individual fuel group. The results offer a different influence on each type of analysis. Finally, by considering both methods, most common correlating and non-correlating properties have been derived.
Technical Paper

Automation of Road Vehicles Using V2X: An Application to Intersection Automation

2017-03-28
2017-01-0078
Today, automated vehicles mostly rely on ego vehicle sensors such as cameras, radar or LiDAR sensors that are limited in their sensing capability and range. Vehicle-to-everything (V2X) communication has the potential to appropriately complement these sensors and even allow for a cooperative, proactive interaction of vehicles. As such, V2X communication might play a vital role on the way to smart and efficient traffic solutions. In the public funded research project UK Autodrive, we are currently investigating and experimentally evaluating V2X-based applications based on dedicated short range communication (DSRC). Moreover, the novel application intersection priority management (IPM) is part of the research project. IPM aims at automating intersections in such a way that vehicles can pass safely and even more efficiently without the use of traffic lights or signs.
Technical Paper

Multi-Domain Modelling of 3 Phase Voltage Source Converters in Modelica Language

2016-09-20
2016-01-2029
This paper will present a multi-domain (electrical and thermal) model of a three phase voltage source converter and its implementation in Modelica language. An averaged model is utilised for the electrical domain, and a power balance method is used for linking the DC and AC sides. The thermal domain focuses in deriving the converter losses by deriving the analytical equations of the space vector modulation to derive a function for the duty cycle of each converter leg. With this, the conduction and switching losses are calculated for the individual switches and diodes, without having to model their actual switching behaviour. The model is very fast to simulate, as no switching events are needed, and allows obtaining the simulation of the electrical and thermal behaviour in the same simulation package..
Technical Paper

Method for Analytical Calculation of Harmonic Content of Auto-Transformer Rectifier Units

2016-09-20
2016-01-2059
Auto transformer rectifier units (ATRUs) are commonly used in aircraft applications such as electric actuation for harmonic mitigation due to their high reliability and relative low cost. However, those components and the magnetic filter components associated to it are the major contributors to the overall size and weight of the system. Optimization of the magnetic components is essential in order to minimize weight and size, which are major market drivers in aerospace industry today. This requires knowledge of the harmonic content of the current. This can be obtained by simulation, but the process is slow. In order to enable fast and efficient design space exploration of optimal solutions, an algebraic calculation process is proposed in this paper for multi-pulse ATRUs (e.g. 12-pulse and 18-pulse rectifiers), starting from existing solution proposed for 6 pulse rectifier in the literature.
Technical Paper

Lower Emissions in Commercial Diesel Engines through Waste Heat Recovery

2016-09-27
2016-01-8084
In order to comply with demanding Greenhous Gas (GHG) standards, future automotive engines employ advanced engine technologies including waste heat recovery (WHR) systems. A waste heat recovery system converts part of engine wasted exergies to useful work which can be fed back to the engine. Utilizing this additional output power leads to lower specific fuel consumption and CO2 emission when the total output power equals the original engine output power. Engine calibration strategies for reductions in specific fuel consumption typically results in a natural increase of NOx emissions. The utilization of waste heat recovery systems provides a pathway which gives both reduction in emissions and reduction in specific fuel consumption. According to DOE (Department of Energy), US heavy-duty truck engines’ technology need to be upgraded towards higher brake thermal efficiencies (BTE). DOE target is BTE>55% for Class-8 heavy-duty vehicles in the United States.
Technical Paper

Effects of Biofuels on the Mixture Formation and Ignition Process in Diesel-Like Jets

2017-10-08
2017-01-2332
In order to reduce engine out CO2 emissions it is a main subject to find new alternative fuels out of renewable sources. For this paper, several fuels were selected which can be produced out of biomass or with hydrogen which is generated directly via electrolysis with electricity from renewable sources. All fuels are compared to conventional diesel fuel and two diesel surrogates. It is well known that there can be a large effect of fuel properties on mixture formation and combustion, which may result in a completely different engine performance compared to the operation with conventional diesel fuels. Mixture formation and ignition behavior can also largely affect the pollutant formation. The knowledge of the combustion behavior is also important to design new engine geometries or implement new calibrations for an existing engine. The fuel properties of the investigated fuels comprise a large range, for example in case of the derived cetane number, from below 30 up to 100.
Technical Paper

Arttest – a New Test Environment for Model-Based Software Development

2017-03-28
2017-01-0004
Modern vehicles become increasingly software intensive. Software development therefore is critical to the success of the manufacturer to develop state of the art technology. Standards like ISO 26262 recommend requirement-based verification and test cases that are derived from requirements analysis. Agile development uses continuous integration tests which rely on test automation and evaluation. All these drove the development of a new model-based software verification environment. Various aspects had to be taken into account: the test case specification needs to be easily comprehensible and flexible in order to allow testing of different functional variants. The test environment should support different use cases like open-loop or closed-loop testing and has to provide corresponding evaluation methods for continuously changing as well as for discrete signals.
Technical Paper

Glow-plug Ignition of Ethanol Fuels under Diesel Engine Relevant Thermodynamic Conditions

2011-04-12
2011-01-1391
The requirement of reducing worldwide CO₂ emissions and engine pollutants are demanding an increased use of bio-fuels. Ethanol with its established production technology can contribute to this goal. However, due to its resistive auto-ignition behavior the use of ethanol-based fuels is limited to the spark-ignited gasoline combustion process. For application to the compression-ignited diesel combustion process advanced ignition systems are required. In general, ethanol offers a significant potential to improve the soot emission behavior of the diesel engine due to its oxygen content and its enhanced evaporation behavior. In this contribution the ignition behavior of ethanol and mixtures with high ethanol content is investigated in combination with advanced ignition systems with ceramic glow-plugs under diesel engine relevant thermodynamic conditions in a high pressure and temperature vessel.
Technical Paper

Exhaust Temperature Management for Diesel Engines Assessment of Engine Concepts and Calibration Strategies with Regard to Fuel Penalty

2011-09-11
2011-24-0176
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of carbon dioxide output in the traffic sector depict substantial requirements for the development of future diesel engines. These engines will comprise not only the mandatory diesel oxidation catalyst (DOC) and particulate filter DPF but a NOx aftertreatment system as well - at least for heavier vehicles. The oxidation catalysts as well as currently available NOx aftertreatment technologies, i.e., LNT and SCR, rely on sufficient exhaust gas temperatures to achieve a proper conversion. This is getting more and more critical due to the fact that today's and future measures for CO₂ reduction will result in further decrease of engine-out temperatures. Additionally this development has to be considered in the light of further engine electrification and hybridization scenarios.
Technical Paper

Closed Loop Combustion Control - Enabler of Future Refined Engine Performance Regarding Power, Efficiency, Emissions & NVH under Stringent Governmental Regulations

2011-09-11
2011-24-0171
Both, the continuous strengthening of the exhaust emission legislation and the striving for a substantial reduction of the carbon dioxide output in the traffic sector depict substantial requirements for the global automotive industry and especially for the engine manufacturers. From the multiplicity of possible approaches and strategies for clear compliance with these demands, engine internal measures offer a large and, eventually more important, very economical potential. For example, the achievements in fuel injection technology are a measure which in the last years has contributed significantly to a notable reduction of the emissions of the modern DI Diesel engines at favorable fuel efficiency. Besides the application of modern fuel injection technology, the linked combustion control (Closed Loop Combustion Control) opens possibilities for a further optimization of the combustion process.
Technical Paper

1D Engine Simulation Approach for Optimizing Engine and Exhaust Aftertreatment Thermal Management for Passenger Car Diesel Engines by Means of Variable Valve Train (VVT) Applications

2018-04-03
2018-01-0163
Using a holistic 1D engine simulation approach for the modelling of full-transient engine operation, allows analyzing future engine concepts, including its exhaust gas aftertreatment technology, early in the development process. Thus, this approach enables the investigation of both important fields - the thermodynamic engine process and the aftertreatment system, together with their interaction in a single simulation environment. Regarding the aftertreatment system, the kinetic reaction behavior of state-of-the-art and advanced components, such as Diesel Oxidation Catalysts (DOC) or Selective Catalytic Reduction Soot Filters (SCRF), is being modelled. Furthermore, the authors present the use of the 1D engine and exhaust gas aftertreatment model on use cases of variable valve train (VVT) applications on passenger car (PC) diesel engines.
Technical Paper

Traffic Situation Assessment and Intervention Strategy of a Collision Avoidance System based on Galileo Satellite Positioning

2012-04-16
2012-01-0280
Nowadays, collision avoidance systems (CAS) are an intensive research topic since the majority of all traffic accidents are collisions that are caused due to inattention or unadjusted driving behavior of the driver. Up to date prototypic CAS are based on on-board environmental sensors, such as camera or radar systems, that scan the vehicle's surrounding environment in order to assess the situation's hazardousness. The functionality of the used sensors under varying environmental conditions and the limited sensor covering area require an enormous effort to ensure a reliable detection of obstacles, and thus limit the application of the systems. In order to expand the operating field of such systems, a Galileo-based CAS will be developed within the project ‘Galileo above’ (application centre for ground based traffic).
Technical Paper

Partially Premixed Combustion of Gasoline Type Fuels Using Larger Size Nozzle and Higher Compression Ratio in a Diesel Engine

2013-10-14
2013-01-2539
If fuels that are more resistant to auto-ignition are injected near TDC in compression ignition engines, they ignite much later than diesel fuel and combustion occurs when the fuel and air have had more chance to mix. This helps to reduce NOX and smoke emissions at much lower injection pressures compared to a diesel fuel. However, PPCI (Partially Premixed Compression Ignition) operation also leads to higher CO and HC at low loads and higher heat release rates at high loads. These problems can be significantly alleviated by managing the mixing through injector design (e.g. nozzle size and centreline spray angle) and changing CR (Compression Ratio). This work describes results of running a single-cylinder diesel engine on fuel blends by using three different nozzle design (nozzle size: 0.13 mm and 0.17 mm, centreline spray angle: 153° and 120°) and two different CRs (15.9:1 and 18:1).
X